

Make Mining Sustainable: Understanding metals in the environment

A. N. Rencz CESO Dec 12 2018, Mongolia

Make Mining Sustainable: Understanding metals in the environment

Purpose: To support sustainable mining through rigorous environmental assessments.

Method: Enhance understanding of biogeochemical cycles for assessing environmental risk and mitigation.

Terms: Ore, mineral, element, anomaly, background, variation, weathering, crustal abundance, toxic, analytical chemistry, soil horizon, robust

Responsibility for Ensuring Environmental Sustainability.

Role for on the ground inspections.

Field inspections.

On-going

Identification of environmental issues

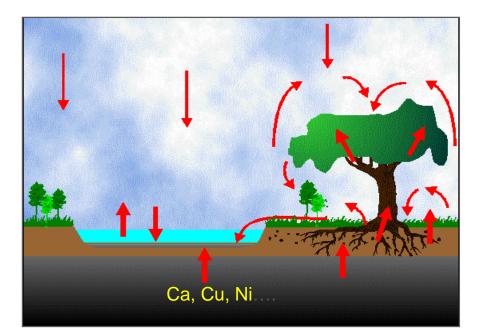
Environmental Impact Assessment Approval.

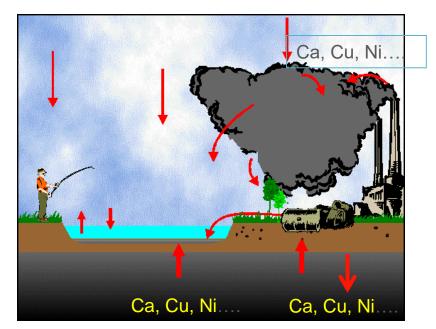
Critical assessment of validity and comprehensive content of mining company's assessment as supported by auditor's report.

Environmental Management Plan Approval.

On a yearly basis

Once-prior to opening

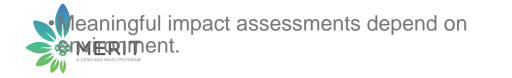

Critical assessment of validity and comprehensive content of mining company's plan as supported by auditor's report.



Useful input to these processes requires a scientific appreciation of the environment and rigorous data.

Sources of chemical variation in the environment

Biogeochemical Cycles

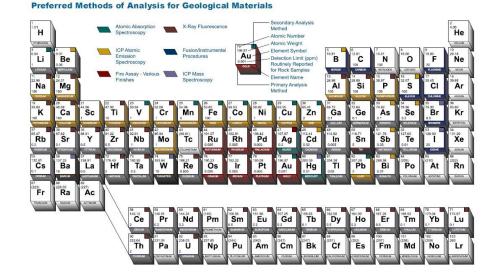

Anthropogenic Cycle

Need to understand the natural to quantify the impact of anthropogenic inputs into the environment

Click to edit Master title style Biogeochemical Cycles

Why is it important?

- •Elements are essential to the well being (health) of the environment and they need to be at levels.
- Concentrations that are too high or too low may be
- The various components of the system are linked.
- High concentration in one part will typically mean a high level in all parts
- •An understanding of the biogeochemical attributes of a system will support

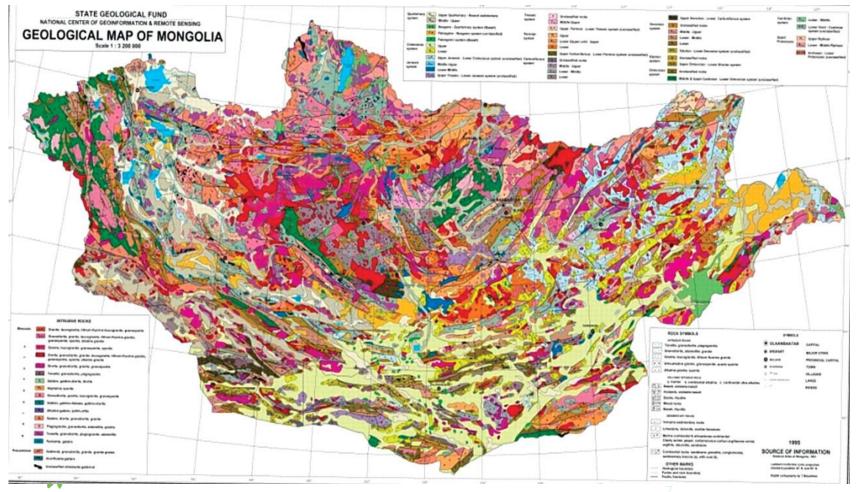


analysis of elements in the

Biogeocheknicel Ordets Master title style Elements

are the building blocks of all

- 118 elements and 93 occur naturally in the environment.
- each element has unique chemical which determine its benefits and risks.



Periodic table of elements

Natural Source of Variation

Lithology- Rocks

Chemical variation is related to differences in rock types

Natural Source of Variation

Minerals

- naturally occurring chemical compound, in crystalline form
- specific chemical composition and form building blocks for rocks
- over 5000 minerals

Predominant minerals around ShinShin.

Galena Lead suffice May contain impurities, such as silver, arsenic, antimony, and copper

Sphalerite Zinc sulfide: May contain impurities such as lead.

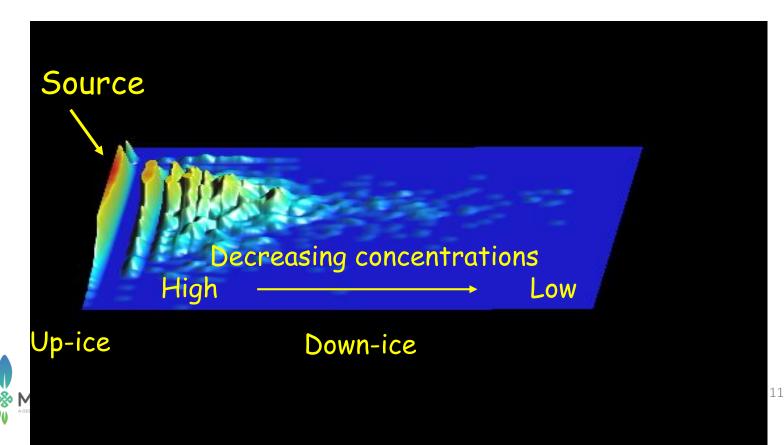
Arsenopyrite Iron arsenic sulfide: Will break down to release As

Minerals

Pyrite cubes: Sulphide mineral. FeS₂

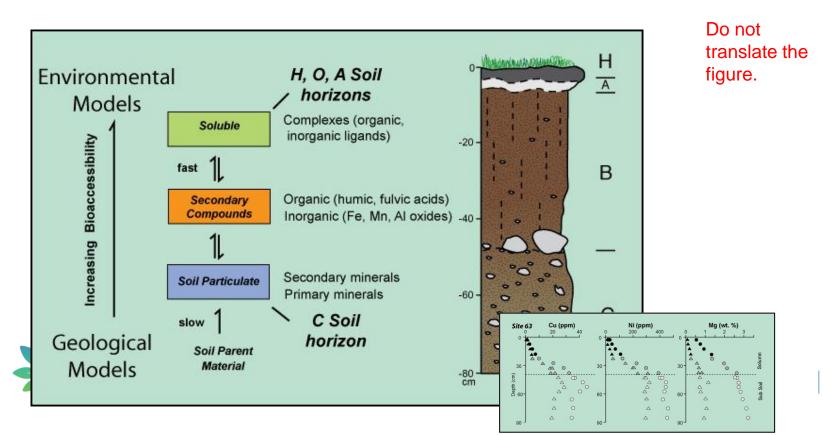
May contain other elements such as gold as in mine at Tinkhun Mine

Minerals Source of elements


Basis for Mining activity – what type of mine Mineral processing- what benefication process Extraction process and chemicals Contamination type Chemistry of the environment Background in the area

Natural Processes affecting variation

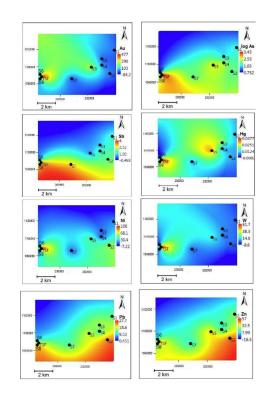
Do not translate the figure.

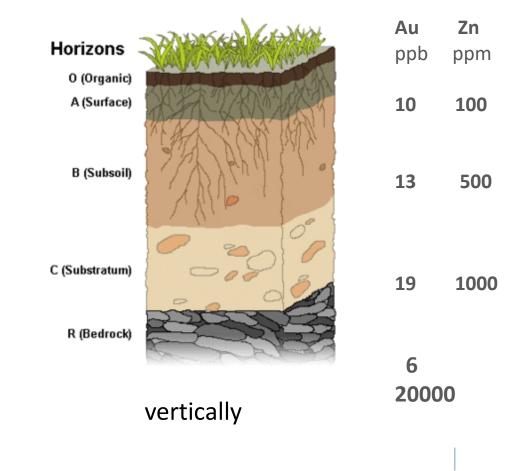

Glaciers disperse minerals from the source in a fan shaped pattern with decreasing concentrations in the down-ice direction.

Natural processes affecting chemical variation

Weathering: Soil

- soils develop from bedrock through weathering processes that breakdown the minerals and alter the characteristics of the soil.
- concentrations of elements in the soil horizons will vary in predictable ways down the soil column




December 18, 2018

Natural processes affecting chemical variation

Spatial Variation

and

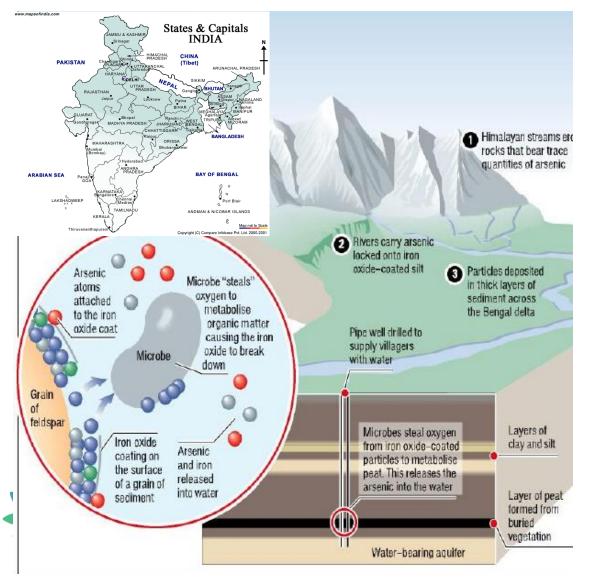
Separating anthropogenic and natural variation

Geochemical background

The usual abundance of a chemical element in unmineralized earth materials (e.g., rocks, soils, sediments, water, vegetation, air) is often referred to as **background**.

Element abundances that occur outside background are said to be *anomalous*.

Geochemical Background e.g. Arsenic in India



•Levels of As in well waters up to **100 times** permissible levels have been reported in West Bengal, India.

• As toxicity in ground waters of West Bengal, India affects **5 to 50 million** people are reportedly affected. Arsenic has been associated with numerous diseases: skin effects, including skin cancer, cancer in the lungs,

Geochemical Background e.g.

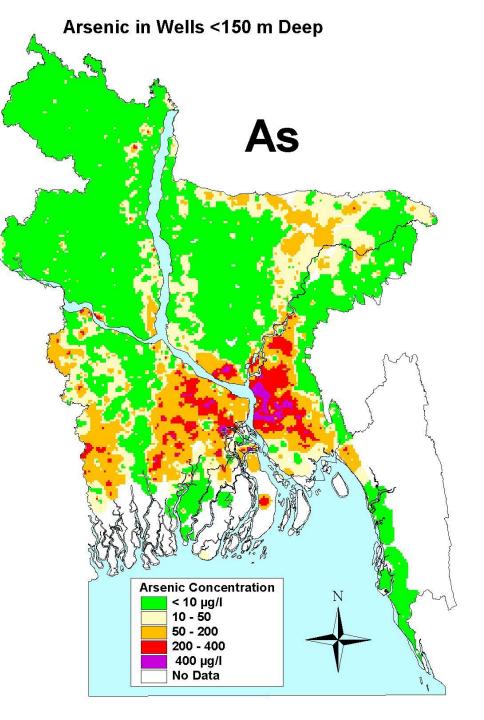
Arsenic in India

Arsenic bearing minerals in Himalayas

Weathering process and river transport of minerals across India

High As in groundwater gets in wells used for drinking

Geochemical Background e.g.


Arsenic in India

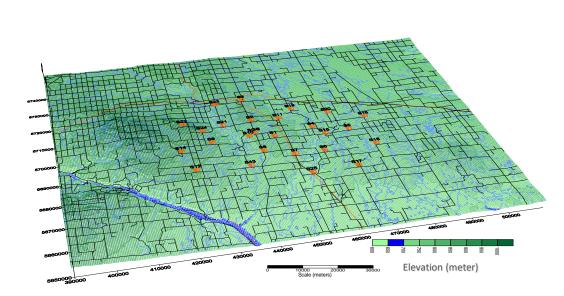
The map shows the average arsenic concentration in the upper 150 m of the alluvial aquifer system.

Note that there are many areas above the accepted level of 10µg per gram.

The high levels are considered to be of natural consequences.

Anthropogenic Processes affecting variation

Smelters


Coal Fired Emission Plants- Hg Mitigation:

Coal-fired power plant

Monitoring stations around plant

Dispersal of Hg around plant

Anthropogenic sources affecting variation

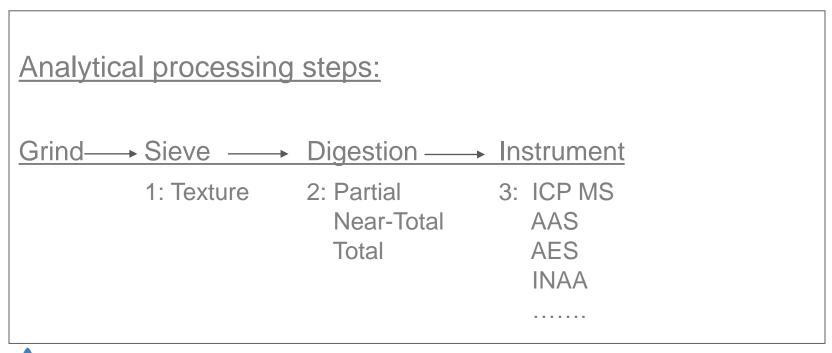
Chemicals

Chemicals stored at Shin Shin.

	N≌	Бодисын нэр, томьёо	Уялдуулсан системийн код	Хаана хадгалдаг	
	1	2	3	4	
	1	Цайрын сульфат ZnSO₄	7446-20-0		
	2	Зэсийн сульфат CuSO4	7758-98-7		
	3	Натрийн бутилксантат C ₄ H ₉ OCSSN ^a	141-33-3	Химийн бодисын түсгай	
	4	Кониферолын тос С ₁₀ Н ₁₇ ОН	9-3-8002	агуулах	
	5	Дикрезил- дитиофосфорын хүчил (C ₇ H ₇ O) ₂ PSSH	27157-94-4		
	6	Кальцийн оксид СаО	1305-78-8	Шохойн агуулах	
	7	Натрийн диэтилдитиокарбамат (C ₂ H ₅) ₂ NCSSN а•3H ₂ O	20624-25-3		
	8	Натрийн этилксантат C ₂ H ₅ OCSSNa	140-90-9	Химийн бодисын тусгай	
	9	Натрийн сульфит Na₂SO 3	7757-83-7	агуулах	
0 <u>%</u> 0	A CESO A	нсі	7647-01-0		
- •	11	Азотын хүчил HNO ₃	7697-37-2		

Chemicals must be considered from a storage/contamination/ hazardous material perspective as well as their concentration in waste material created during processing stage.

Anthropogenic sources affecting variation Chemicals


Tinkhun LLC

836	Sodium cyanide	50.3 tn	
703	Acetic Acid	9 kg	
703	Calcium hypochlorite	30 tn	
703	Nitric acid	2889 kg	
703	Oxalic acid	100 kg	
703	Sodium carbonate	375 kg	
703	Sodium hydroxide	2400 kg	
703	Hydrochloric acid	899 kg	
	Sodium sulfite	3975 kg	
	Sulfuric acid	396 kg	
703	Calcium oxide	35 tn	
703	Ammonium fluorocrystalline	9kg	
703	EDTA salt	2kg	
703	Silver (I) nitrate	0.7kg	
703	Hydrogen peroxide	22.8 kg	
	Acetone	3.2 kg	
703	Chloroform	2 kg	
703	Calcium carbonate	0.5kg	
703	Potassium iodide	22 kg	
703	Sodium chloride	9.9 kg	
703	Phosphoric acid	10.5 kg	
703	Polyacrylamide	500 kg	
703	Starter	9.5 kg	
703	Sodium thiosulfate	20 kg	
703	Tiomochyevin	0 kg	
	Sodium hydrofoam	4.5kg	
703	Potassium dihydroflox	4 kg	
703	Chloramine B	4.5 kg	
703	Nicotine Acid	2.5 kg	
703	Potassium nitrate	2.5 kg	
703	Pyrazolone	9 kg	
703	Ethyl acctate	10 kg	
703	Dimethylphormamide	20 kg	
703	Tartaric acid	10 kg	

Chemical Results Variation

Do not translate the instrument column.

Chemical Analysis: Rocks/Soils

Digestion is the step in which the minerals are broken down and **Meene**nts are brought into solution. Typically acids are used.

Chemical Results Variation

Texture (measure of soil grain size)

size fractions-	clay	silt	sand
	(.< 002 mm)	. (.005 mm)	> (.02 mm)

typically metal concentrations increase with smaller size fractions as there is increased Cation Exchange Capacity and therefore more binding sites

silt fraction- less than 63 microns (.063 mm) is a "standard" size fraction in exploration geochemistry

The rigorous a comparison of soil geochemical results must all be of the same size class.

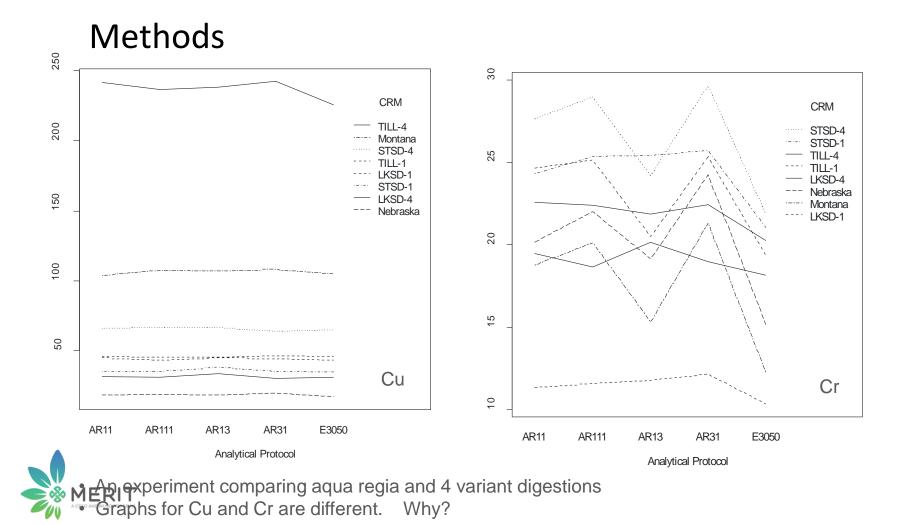
Chemical Results Variation

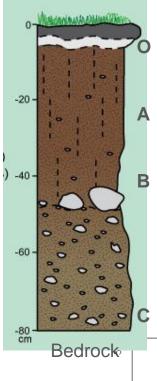
Analytical Digestion Methods

Chemical reagents (acids) only release a portion of the elements from the soil/matrix matrix- elements must be in solution for analysis to be analyzed:

Extractions:

Partial: Aqua regia (mixture of HCL & HNO3) is common but does not release all metals from its matrix. There are numerous AR variants

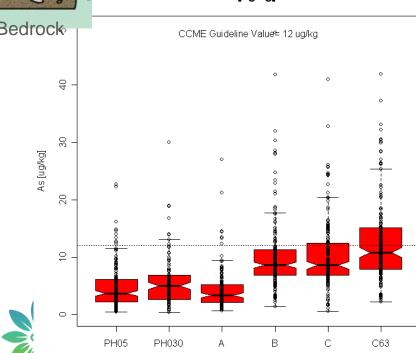

Near Total: Includes stronger acids such as HF or HCIO3 to "attack" the mineral. Some minerals still resistant: chromite, zircons


Total: Some chemical methods like fusion techniques but total typically uses instrumentation: eg XRF and INAA are most common

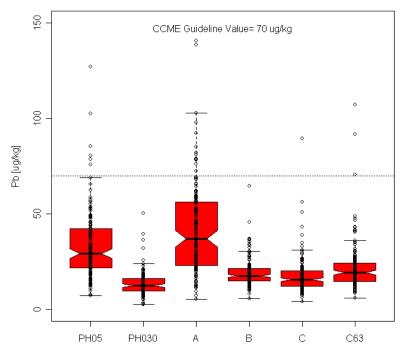
To be Rigorous a comparison of chemical results must all be analyzed using same method.

Do not translate after the word METHODS

Soils Analytical Variation


Questions

1: Why are concentrations for both elements greater in the C63 (<.063 mm) analysis than the C(>2 mm) analysis?


2: In As the concentrations are higher at the bottom of the soil column whereas in Pb the results are opposite. Why? Could it tell anything about the source of the Pb.

3: For As the concentrations are lower in the O (organic rich) horizon than in the other horizons. Why?

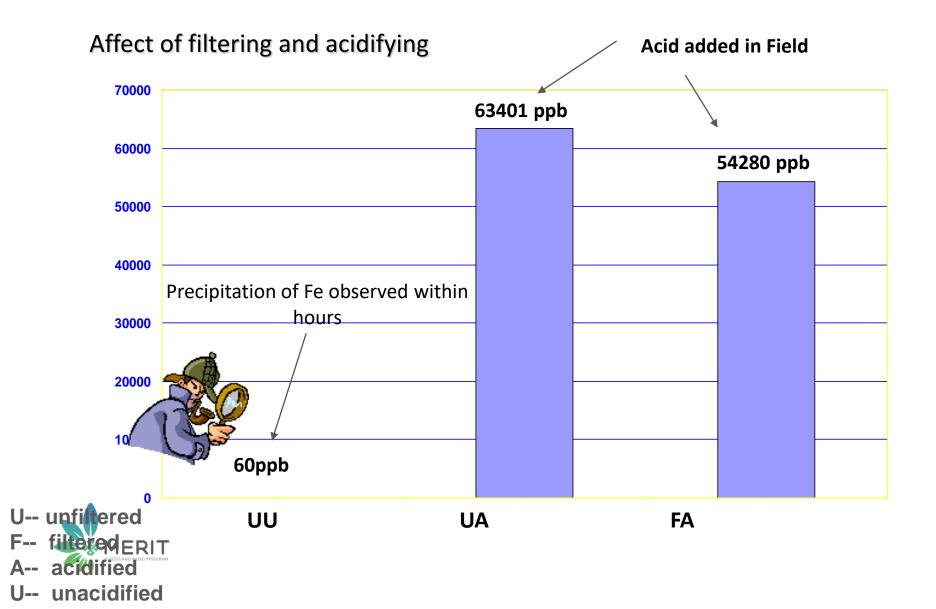
4: Which element is more mobile in the environment- it cycles faster .

As [ug/kg]

Pb [ug/kg]

Analytical Variation

To compare results


Soils:

Sample location lat., long., depth (soil Horizon) Sample preparation: texture Analytical technique Extraction process instrumentation

Analytical Variation: Waters

Do not translate the graph but do translate the small box in the lower left (unfiltered, filtered, acidified and unacidified)

Analytical Variation

Assess Validity (is it right)

Reference Materials are 'controls' or standards used to validate analytical measurement methods.

1: Reference Material

Material, sufficiently homogeneous and stable with respect to one or more specified properties.

2: Certified Reference Material (CRM's) A certified reference material is a particular form of measurement standard. Reference material characterized by a valid procedure (ISO) for one or more specified properties, accompanied by a certificate that provides the value of the specified property, its associated uncertainty.

Analytical Variation

Put in the table as is

Standardizing Results

Certified Reference Material

Steps in producing Certified Reference Material

Certified Reference Material

Metal	Con
As	100 pp
Cu	1000 ppb
Ni	500 ppb
Pb	20 ppb
••••	

Sample: Stream

Homogenize

Analyze

Certified Reference Material: Insert a portion of the CRM as a sample just like any other sample. Analytical company should not know it is a CRM

CRMs are areitable from Central Geologic Laboratory of Mongolia

December 18, 2018

Analytical Variation

Ensuring Validity of Results

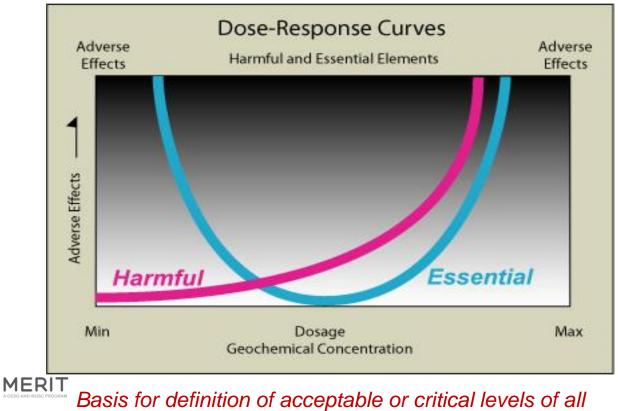
Three types of non-field samples to include in your submission of samples to verify validity of the results:

- 1. Add CRM or make up your own standard reference material with a known concentration of a metal or metals.
- 2. Include an analytical blank (distilled water) as a sample.
- 3. Include a field blank: a sample of purified water that you take to the field and process it like any other sample that you are taking in the field. - Indicates whether or not your sampling procedure is affecting the results.

Biogeochemistry and Health Toxic

"A substance is toxic if it is entering or may enter the environment in a quantity or concentration or under conditions that:

A. have or may have an immediate or long-term harmful effect on the environment or its biological diversity;


B. constitute or may constitute a danger to the environment on which life depends; or,

C. constitute or may constitute a danger to human life or health."

Biogeochemistry and Health Toxic

Dose-Response curves indicate health effects

substances in the environment including metals.

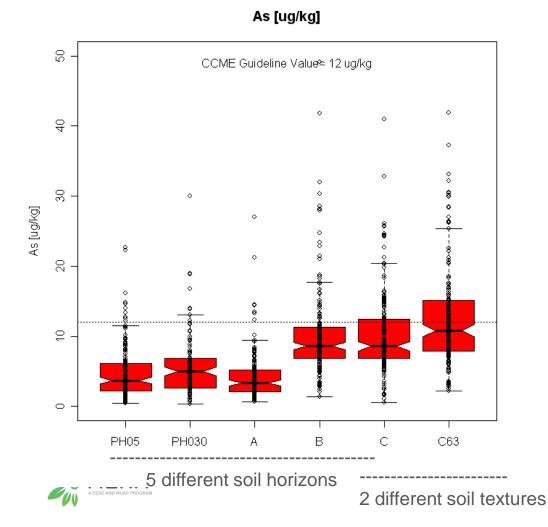
Biogeochemistry and Health

Quality Guideline Levels -

	Freshwater ¹	Sediment ²	Soil ³
Element	μg/L (ppb)	µg/kg (ppb)	mg/kg (ppm)
As	5	17000	12
Cr+6	1	90000 ⁴	.4
Cr ⁺³	8.9	Х	64 ⁵
Hg	.026	486	6.6
Se	1	Х	1
Zn	7.0	315000	250

Most countries have their own quality guidelines.

1: Risk to aquatic life. 2: Risk to aquatic life. 3: Risk to human health 4: Total Cr.


http://st-ts.ccme.ca/en/index.html

Canadian Council of Metals In Environment

https://www.ccme.ca/en/resources/canadia n_environmental_quality_guidelines/

Biogeochemistry and Health

Quality Guideline Levels

Do not translate or include the question in the translated slide presentation

Question:

What is the importance of the differences in the concentrations between the various media with specific reference to the quality guideline limit of 12 ug/kg?

Geochemical Data Management

Геохимийн мэдээллийн менежмент

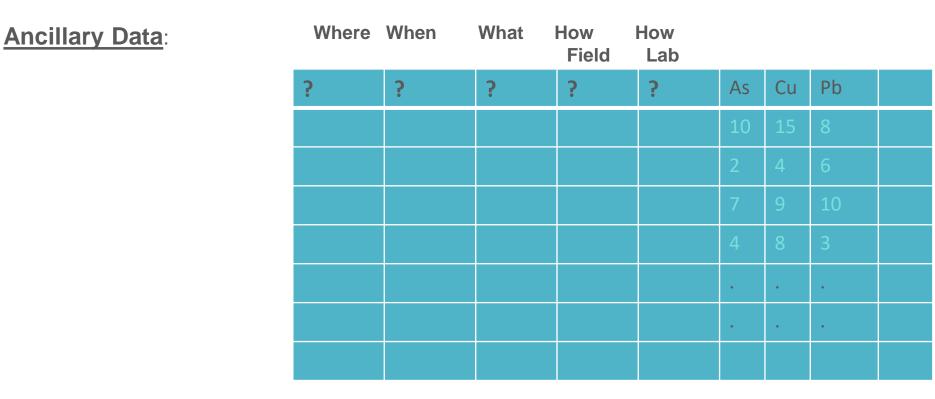
All information needs to be put into a data base.

Бүх мэдээллийг мэдээллийн санд оруулах хэрэгтэй.

Metal concentrations in soil.

#	As	Cd	Pb	Zn	Mn	Cu	
1	59.4	0	0	0	0	0	1
2	25.2	0	0	0	0	0	
3	43.4	0	135.8	0	0	0	
4	29.3	0	66.6	0	0	0	1
5	23.9	0	0	0	5	0	
6	34.7	0	29.9	0	0	0	Questions?
7	21.1	0	0	0	0	0	1: What observations can you make
8	52.3	0	6.0	0	0	0	from this data set about the
9	16.3	0	0	0	0	0	
10	24.3	0	0	0	0	0	environment?
15	520	40	0	650	8000	65	2: What critical information is missing
30	104.3	0	164.0	228.0	0	0	from this data set that you need to
31	39.3	0	89.0	0	1286.0	0	interpret it?
							3: Given the association of certain
32	103.8	0	12.0	215.0	574.0	0	elements with other elements can you
33	67.3	0	337.2	192.5	1077.0	0	suggest what is a probable reason for
34	19.5	0	0	0	950.0	0	the variation?
35	26.3	0	0	0	728.0	0	4: Do you accept results for sample 15?
36	33.3	0	0	0	1270.0	0	If not what would you do?
							5: Do you accept the results for sample
37	37.3	0	0	0	1092.0	0	39? If not what would you do?
							6: Would these results concern you
38	222.3	0	525.0	620.0	1809.0	0	about possible negative affects in the
39	394.2	0	5086.2	6964.0	1721.0	0	environment?
40	32.3	0	31.0	1942.0	870.0	0	
41	248.5	0	3065.0	763.0	1180.0	0	
LIMIT	12	1.4	70	250	xx	63	

Geochemical Data Management


Geochemical data requires other information.

<	Ancillary	>	Geochemical			
?	?	?	As	Cu	Pb	
			10	15	8	
			2	4	6	
			7	9	10	
			4	8	3	
				•	•	
			•			

Required to: Compare results from other organizations Compare time trends

Geochemical Data Management

Make Mining Sustainable: Understanding metals in the environment

Message: Useful environmental impact assessments and evaluation of EIA's depends on <u>rigorous</u> understanding and analysis of elements in the environment.

Thank you

Mongolia: Enhancing Resource Management through Institutional Transformation

> Хаяг: Нэйшнл таймс ньюс тауэр, 3-р давхар Худалдааны гудамж, Хороо 1 Чингэлтэй дүүрэг, Улаанбаатар-15160

Утас: 7610-5000

40